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Various theories seeking to relate the velocity statistics of Lagrangian particles to the 
statistics of the Eulerian flow in which they are embedded are examined. Mean particle 
drift, mean-square particle velocity and the frequency spectrum of velocity are ex- 
amined for stationary, homogeneous and joint-normally distributed Eulerian fields. 
Predictions based on a third-order weak-interaction expansion, the successive appro- 
ximation procedure of Phythian (1976), the quasi-normal approximation of Saffman 
(1969), the parametrized model of Saffman (1962), and a new procedure based on a 
statistical estimator of the kinematic equation are compared with simulations of 
particle motion in one-dimensional flow. Only the statistical estimator produces both 
acceptable mean-drift and frequency-spectrum predictions. 

1. Introduction 
Recent technical advances have led to an increasing number of oceanic velocity 

observations made using both moored current meters and freely drifting floats. There 
are various technical requirements affecting selection of the observational method but 
t>he most important distinction between these types of observation is that they cha- 
racterize fundamentally different aspects of the velocity field. Complete observations 
of either type allow calculation of any quantity found by the other method but limited 
data obtained in one reference frame cannot generally answer questions which are 
easily addressed in the other frame. 

In  this paper the relation between velocity observations made in the Eulerian 
reference frame (at fixed positions, as obtained from moorings) and Lagrangian obser- 
vations (made following fluid particles, as obtained from drifting floats) are examined 
from the statistical point of view. The hope is that such an examination will aid 
selection of the appropriate technique for a particular task and, eventually, allow the 
gain of new insight about the ocean from the differences between observations made 
in the two reference frames. It is unlikely that there is an exact closed-form relation 
connecting the low-order statistics which can be deduced from limited observations 
in the two reference frames. Consequently the approach here is to examine a number 
of theories claiming to  give approximate relations and to test these theories in the 
simplest case of velocity fields which are statistically homogeneous and stationary 
and, in the Eulerian frame, have joint-normal distributions. The hope is that those 
theories which perform best in this simplified context will be the best with which to 
explore the Eulerian-Lagrangian relationship in more realistic velocity fields. 

In a stationary and homogeneous field Eulerian statistics can be defined relative 
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to time, space or ensemble averages which are equivalent and will be denoted here 
by { ). If the Eulerian velocity prescription is u(x, t )  the statistics are, for the joint- 
normal fields of interest here, completely specified by the mean velocity {u) which, 
without loss of generality, will be taken to vanish, and the covariance tensor 

En&, t )  = (u,(xo, t o )  u,,(xo + x, to  + t ) ) ,  ( la)  
where xo and to are arbitrary and may be used for averaging. The associated wave- 
number-frequency spectrum @ is defined by 

E,(x, t )  = dk du @,,(k, W )  cos (k , x + wt) ,  S S  
where by convention integration here is over both signs of w.  

The Lagrangian description of motion involves the particle position r, its velocity 
v, and identification of the particle. Identification is provided by the particle position 
at  the time of deployment, taken here as time t = 0. Thus 

(2) 

Definition of Lagrangian statistics involves specifying the class over which averages 
are taken. Apparently the most useful specification is an ensemble average over many 
particles which were deployed at random. An important concern of this paper is that, 
even in homogeneous and stationary Eulerian fields, such statistics are not in general 
stationary. This is a result of the fact that as particles are moved by the flow they 
tend to. sample preferentially particular regions of that flow. The clearest example of 
this is particles deployed randomly into a field of compressional waves. A t  the time of 
random deployment particles are equally likely to be found in high- and low-density 
regions of the flow. Later, particles tend to remain longer in high-density regions, 
where they are advected in the direction of phase motion, than in low-density regions 
where advection is counter to phase propagation. Thus, for example, a long-term 
time average of particle motion is more representative of properties in regions of 
parallel phase and particle propagation than of regions of opposite phase and particle 
motion. As is discussed below, this behaviour also occurs when particles are deployed 
in particular regions of non-divergent flows. At the time of deployment, statistics of 
Lagrangian and Eulerian velocities are equivalent, but later statistics like average 
particle speed and velocity can differ from the Eulerian counterpart. This is not 
always accounted for in theories of Lagrangian statistics, as will be seen below. Except 
in pathologically simple flows it can be expected that long after deployment in homo- 
geneous and stationary Eulerian fields the Lagrangian statistics will become stationary; 
this state of stationary particle statistics is referred to here as the ‘long-after-deploy- 
ment ’ limit. 

a 
at v(ro, t )  = - r(ro, t )  = u[r(ro, t ) ,  t ] ;  r(ro, 0) = ro. 

The mean Lagrangian velocity is 

V ( t )  = (v(r0, t o ,  

where ro is arbitrary and averaging can be carried out over deployment ensembles 
and over ro. As t -+ m it  is expected that V will approach a constant value which, in 
anisotropic fields, may represent a non-zero Stokes drift. This long-after-deployment 
mean velocity could be obtained by a time average of a single particle’s velocity if that 
average did not include times near t = 0. 
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En&,, t 2 )  = <%Are, 4) vmwo, t 2 D .  

3 

The time-lagged mean product of a particle's velocity is 

(3a) 

In  the long-after-deployment limit, as t,  and t, become large and V approaches a 
constant, a time-lagged covariance can be defined by 

( 3 b )  L n r n ( t 2 - t ~  = ( v A ( t l ) v h ( ~ )  = fim E'nrn(tl,t2)-KG7m, 

L,,(t) = / d w Y n r n  ( w )  COSWt, 

tl* 

where v' = v - V. The Lagrangian frequency spectrum Y is then defined by 

( 3 4  

where, by convention, integration over both signs of w is implied. Particularly des- 
criptive subsets of the information in Y are the long-after-deployment particle-velocity 
variances Lnn( 0 )  and single-particle dispersion 

where r' = r - (r). By analogy with Fickian diffusion, this particle dispersion can be 
related (Taylor 1921) to an 'eddy diffusivity' 

I d  
2 at 

K,,(t) =--a,",. 

If the spectrum Y is essentially constant for IwI < 117 then for t 9 7 an approximately 
constant diffusivity 

K n n ( 4  = JOW L ( t )  dt = nY?nn(O) 

will be obtained. For t < 7 the diffusivity varies and may take negative values. If Y? 
does not approach a limit as o + 0 then K can grow without bound. 

The diffusivity K describes the growing uncertainty in the position of a once-located 
particle. It does not directly describe the tendency of a particle cloud to increase in 
size unless the cloud is large enough that particle velocities are uncorrelated (Stommel 
1949). Description of relative particle motion requires constructs like the ' neighbour ' 
statistics introduced by Richardson (1926). One such statistic is 

- to,  x) = ([rTXa, t )  - r?3b, t)12), 

where a and b denote particles found at to to be separated by x and to is restricted to 
being long after deployment. While easily defined, this averaging procedure is difficult 
to analyse unless the particle statistics are stationary right from the time of deploy- 
ment. Analysis of multiple-particle statistics is beyond the scope of this paper. 

In  their ideal form oceanographic drifters are limited by buoyant stability to niove- 
ment in prescribed surfaces determined by pressure and density. Thus the lateral 
motion of the drifter is identical with that of a particle in a two-dimensional flow in 
which u(x, t )  is equal to the horizontal component of the three-dimensional flow a t  
the same time t ,  the same lateral position x, and at  the depth of the surface of motion. 
While there are obvious advantages to viewing drifter motion in ternis of its two- 
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dimensional analogue, there are two points deserving note. First, although the three- 
dimensional flow is non-divergent, the two-dimensional analogue will in general be 
divergent. Secondly, some of the unique features of the Lagrangian velocity field may 
result from differences between the true Eulerian velocity and its two-dimensional 
analogue. As an example of this latter point, recall that half the classical second-order 
Stokes drift (Phillips 1977, $ 3.3) of a particle on the surface of a deep-water gravity 
wave results because the mean surface velocity differs from the mean velocity at  the 
mean surface; the other half of the Stokes drift results from the particle remaining 
longer on a crest than on a trough, just as in the sound-wave example discussed 
above. 

The foregoing introduction is intended to meet three objectives: (i) to establish a 
nomenclature for some statistical constructs useful in describing stationary and 
homogeneous Eulerian fields and the Lagrangian kinematics associated with them, 
(ii) to point out that the statistics of particles released at random differ from the 
statistics of particles selected a t  random from a population released long before, and 
(iii) to establish why examination of divergent Eulerian velocity fields is pertinent to 
the geophysical context. 

The remainder of this paper is concerned with developing and testing methods of 
predicting Lagrangian statistics from Eulerian statistics in the simplest case of 
particle motion in one-dimensional divergent flows with homogeneous, stationary 
and joint-normally distributed Eulerian velocity. Particular interest is placed on 
prediction of the long-after-deployment mean velocity, mean-square speed, and 
frequency spectrum. The simplified geometry is pertinent to particle motion in sound 
waves or in two-dimensional flows where particles are confined to a line in which an 
Eulerian prescription can be devised, such as drifters confined to constant-pressure 
surfaces in a two-dimensional flow. The simplified context simplifies notation and all 
theories are extended trivially to multiple dimensions. It is expected that the relative 
utility of the theories does not depend on dimensionality but, as Kraichnan (1977) 
has shown, the predictive ability of theories can be strongly dependent on features 
of the velocity field which are evident only in three dimensions. 

In $ 2 a number of previously proposed theories pertaining to description of Lagran- 
gian kinematics are reviewed. These may be divided into approaches based on exact 
averages of approximate solutions to the particle motion kinemat'ics (2) and approaches 
based on exact solution of equations approximately describing the evolution of sta- 
tistics (closure models). From a pedagogic point of view it is interesting to note that 
the fundamental difficulty in this problem is not the nonlinearity of (2) since it can be 
converted to a linear equation, as is shown in 5 2.3. Rather, the problem is simply that, 
in either form, this equation cannot be solved exactly and consequently accurate 
averages of the solution are difficult to obtain. 

In 5 3 a new approach to the theoretical problem is advanced. The point of novelty 
here is that a combination of approximate solution of (2) and a statistical hypothesis 
is employed. The particular theory developed in $ 3  may not be adequately developed 
but it would appear that the concept of combining approximate solutions with closure 
hypotheses may hold promise over using either alone, in both the present problem and 
more complex ones. 

In 3 4 the results of numerical simulations of one-dimensional particle motion are 
described and compared with the various theories. The primary points of comparison 
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are the mean Lagrangian drift V ,  the mean-square particle speed L(O), and the single- 
particle frequency spectrum Y(u). Examination of multi-particle statistics, multi- 
dimensional flow, and inhomogeneous Eulerian fields is deferred. 

2. Some previous approaches 
Only a few of the numerous approaches to relating Eulerian and Lagrangian sta- 

tistics are considered here. Those discussed were selected by the criteria that they be 
based on simple and broad physical principles, that they do not involve adjustable 
constants, and that they result in Eulerian-Lagrangian relations which are easily 
evaluated. The latter criterion is imposed because the aim here is not only to evaluate 
predictive abilities but to expose how features in one reference frame are manifested 
in the other. Developments are presented in the context of one-dimensional flow to 
simplify notation; all are extended to several dimensions with ease. Restriction to 
statistically stationary, homogeneous and joint-normally distributed flow is more 
than a convenience and certain developments depend critically on one or more of 
these simplifications. 

2.1. Weak interaction 
In  direct analogy to the methods employed to study weakly nonlinear wave fields 
(Hasselman 1966), description of particle motion can be approached using an expansion 
in a small parameter 8 characterizing the ratio of typical particle velocities to typical 
phase velocities in the Eulerian field. Advantages of this approach are simplicity of the 
analytical framework already familiar in wave dynamics and the fact that restriction 
to homogeneous, stationary and joint-normally distributed fields is not essential. 
Disadvantages are that predictive ability is limited to very small values of E and that 
algebraic complexity escalates rapidly with the order to which the analysis is carried. 
The limited ability to predict Lagrangian behaviour (see 0 4) may have implications 
for the interpretation of wave-interaction theories seeking to describe cross-spectral 
energy transfer. 

The weak-interaction approach is the classical one used to describe particle motion 
in wave fields (c j .  Phillips 1977, 0 3.3; Kenyon 1969; Hoult 1968). A two-term expan- 
sion is sufficient to disclose a difference between the mean Eulerian velocity and the 
mean Lagrangian velocity V, and this same analysis clearly demonstrates how the 
transition to the statistically stationary ‘ long-after-deployment ’ limit of Lagrangian 
motion is achieved. To my knowledge the approach has not previously been carried 
to the point where changes between the Eulerian and Lagrangian frequency spectra 
are detectable, but this involves only a routine calculation. 

Let length and time be normalized by the characteristic scales of the Eulerian spec- 
trum and take 

where T = E 2 t  is a slow time over which the particle may drift a distance of order unity; 
the dependence of urn and r ,  on T is not denoted explicitly. V ( t )  is the mean Lagrangian 



6 R. E. Davis 

velocity obtained by averaging over realizations of the Eulerian flow. A conventional 
two-time expansion, which rests essentially on the Taylor series 

U ( T ,  t )  = &(R, t )  + s2Pl(t) Q,(R, t )  + ..., 
has been carried to determination of w3. 

At O(t-9) the mean Lagrangian drift velocity 

V ( t )  = @(Q,(R, t )  ?,(t)) = E,(O, t ' )  dt' fo' (5) 

is obtained. So long as the Eulerian spectrum is finite at  zero frequency this velocity, 
essentially a Stokes drift, approaches a constant for long times after initial random 
deployment. From +he definition 

V ( t )  = <u{W t } )  

it is obvious that V ( 0 )  = 0 since r(0)  is the random deployment position. In  anisotropic 
velocity fields a correlation of particle position and velocity develops during a transi- 
tion period, leading to a non-zero V .  

An approximation of (w(tl) w(t2)) = &t1, t,) to O(e4) can be achieved with the restric- 
tion that the Eulerian spectrum vanish at zero frequency. This is required so that 
(r:) remain bounded and the restrictions of the expansion not be violated. Then the 
approximation 

(v(t1) W 2 ) )  = (u(t1) u(t2)) + (Ml) uz(tz) r1V1) rl(t2)) 

+ Hu(t1) uzz(t2) m z )  + W 2 )  uzz(t1) r:(tl)) 

+ ( W l )  u,(tz) ' 2 ( t 2 )  + u(t2) M l )  rz(t1)), 

where u(t) denotes u(R(&!), t}, can be directly evaluated for joint-normally distributed 
u(x, t ) .  In terms of the Eulerian covariance the result is, to O(e*), 

J%l, t 2 )  = W R Z  - Rl), t,  - tl) + W x z ( t 2  - t l )  {{rl(tZ) - r1(t1))9 

where 

(R,) = s'" V(t )d t ,  
0 

E(t) denotes E(0, t ) ,  the symbol [*] denotes the [ ] expression to the left with tl and 
t, interchanged, and 

({r1(t2) - r1(t1)}2) = p's" dt" E(t"- t ' ) .  
t l  11 

The point of greatest importance here is that (w(tl) w(t2)) is a function oft, and t2 until 
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both become large and stationary Lagrangian statistics are achieved; this feature of 
the approximation is borne out well in simulation experiments. 

In  the long-after-deployment limit &tl, t,) - V2 becomes a function of t = t, - t, 
alone, being 

a t )  = E( Vt ,  t )  + E,(O, t )  [fm, 0 )  - H(O,t)l+ H:,(o, t )  
0 +s dt’E,,(O,t’) [H,(O,t+t’)-H,(O,t-t’)] 

H(x, t )  = -s” d t ’ r  dt”E(x,t”) 

--m 

0 +I dt’H,,(O,t’) [E,(O,t+t’)-E,(O, t - t ‘ ) ] ,  
-03 

where 

--m --m 

is the covariance ( r l ( z ,  t )  r,(O, 0)). The Lagrangian frequency spectrum is easily com- 
puted from L(t) and in the special case of isotropic Eulerian fields, where V = 0, is 

where B denotes Cauchy’s principal value excluding w: = o2 and Q, is the Eulerian 
wavenumber-frequency spectrum. 

2.2. Successive approximation 
The weak-interaction approach rests, in the h a 1  analysis, on a Taylor-series expansion 
of the Eulerian velocity around some location near where the Lagrangian particle is 
located. Restricting the Eulerian field to have no energy a t  zero frequency and velo- 
cities small compared with typical phase velocities permits the expansion, at least as 
an asymptotic limit. Phythian (1975) has suggested a related approach, based on 
successive approximations, which a t  least formally is not limited to small particle 
displacements. Phythian considered only isotropic, stationary, homogeneous fields 
and showed that the second approximation is easily evaluated for joint-normally 
distributed fields. Relaxation of any or all of these restrictions appears possible 
but computational effort threatens to escalate quickly. 

The successive approximation scheme is based on the recurrence relation 

With the initial approximation r,(t) = 0 one obtains 

r,(t) = s; u(0, t ’ )  at’, 
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Failing to account for the non-stationary behaviour of the Lagrangian statistics, 
Phythinn suggested the approximation 

where 
z = - (exp [i{ - kr,(t) + au(0,0) + Pu(z, t ) } ] ) .  

Because rl is a linear operation on the joint-normally distributed Eulerian velocity, 
the exponent in the expression for z is normally distributed and the expectation value 
can be obtained analytically, yielding 

L(7) = - dk dxexp { ikz  - 4k2at(7)} [(u(O, 0) u(x, 7 ) )  - k2(r1(7) u(0,O)) (r1(7) u(2, T ) ) ]  
2n ‘ S  s 

where 

For subsequent reference, note that the last term of (8), involving an integral of E, 
results from correlation of r1 and u; the first term, involving the exponential, will be 
recognized as the Gaussian distribution of x - rl or, equivalently, the concentration 
of marked particles at  position 2. 

Extending the same expansion and methodology to determining mean Lagrangian 
drift, one obtains 

r 

V ( t )  = d2 (u(2, t )  S[x - r1(t)3) J 

It is interesting to note that this expression for V(t )  is consistent with that obtained 
from the weak-interaction theory under the conditions where the latter applies. Note 
that a; is the variance of rl(t), not of the full r ( t ) ,  so that if the Eulerian spectrum 
contains no energy at  zero frequency crl approaches a finite limit as t -+ 00. If E(x, t )  
is O(e2), as in the weak-interaction approach, then crl is O(s)  and (9) may be expanded 
in powers of B yielding (6) as the leading term. On the other hand (9) also applies to 
Eulerian fields with finite energy at zero frequency, in which case c1 grows without 
bound and the predicted V vanishes. Phythian suggested that when V 0 the 
selection r,, = 0 may be inappropriate but changing ro does not appear to alter the 
basic behaviour of V ( t ) ,  specifically the prediction that V vanishes as vl becomes 
large. The simulations of 5 4 show this prediction to be incorrect. 
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2.3. Qwi-normal approximation 
Both the theories outlined above are based on approximate solutions of the funda- 
mental kinematic equation (2), written in its nonlinear form. Thus they are based on 
exact averages of approximate solutions of the problem. An alternative approach, 
more in line with the ‘closure theories’ used in modelling turbulence, is to seek 
approximate equations which describe the evolution of statistics and which can be 
solved exactly. As an example, the quasi-normal approximation first introduced by 
Saffman (1969) will be discussed; it is the simplest of a category of theories based on 
predicting the probability distribution of particle position. 

That the difficulty in solving the kinematic equation (2) is not its nonlinearity is 
demonstrated by converting it to the ‘ advected scalar ’ equation 

c(x, t )  = S[x-  r ( t ) ] ,  8,c + a,uc = 0. (10) 

Herec(x, t )  is the analogue of concentration per unit length (volumein three dimensions) 
of marked particles and 6 is the Dirac delta function. By considering an ensemble of 
realizations for which c(0,O) = S(z) one can decompose the concentration into a mean 
component C and a fluctuation c’ such that (c’) = 0. 

The Weiner-Hermite expansion employed by Saffman (1969) is equivalent to the 
quasi-normal approximation that the moment (uuc‘) vanishes. The virtue of the 
Weiner-Hermite expansion is that it can, in principle, be carried to higher order so 
that non-vanishing cumulants can eventually be included. The higher-order expan- 
sion has not yet been implemented so the outline here follows the simpler quasi- 
normal framework. Thus the mean and fluctuating parts of the advected scalar equa- 
tion are 

a,c + az(ucf) = 0, 

c’(x, t )  = - a,/; dt’ [u(x, t’) {c’(x, t ‘ )  + C(Z, t’)} - (u(x, t ‘ )  c’(x, t’))]. 

Substituting c’ into the equation for C and dropping (uuc’) gives 

1 
a,c = [ dt’ 8,(u(x, t )  a,{u(x, t’) C(x,  t‘)}) 

J O  

= [‘dt’ [E(O,t’- t )a~zC(x, t ‘ )+E,(O,t’  -t)a,C(z,t’)]. 
J O  

The quasi-normal approximation also leads to a simple relation for the Lagrangian 
covariance if the non-stationary Lagrangian behaviour following deployment is 
ignored; thus 

with the quasi-normal approximation yields 

L( t )  + v2 2: E(t, 0 )  = I d x  (u(0,O) u(x, t )  c(x, t ) )  

L(t) = I dx E(z ,  t )  C(x,  t )  - P. (12) 

The approximation (12), where C is the true mean concentration, not that given by 
( 1  1) ,  was first advanced by Corrsin (1960). It plays a central role in various theories 
of turbulent dispersion including Kraichnan’s direct-interaction approximation. 
Corrsin’s conjecture (12) corresponds to dropping all but the first two terms of the 
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weak-interaction approximation (6 )  and neglecting the second term of (8) for the 
successive-approximation procedure. 

The mean drift predicted by the quasi-normal approximation is identical to ( 5 )  
obtained from weak-interaction theory. This is shown when (1 1 ) is substituted into 

V = - J x C ( r ,  d t )  ax, at 

which is then integrated by parts to obtain 

V = -I: dt’ E,(O, t’ - t )  C(x ,  t ’ )  dx = EJO, t‘)  dt’ . s 1: (13) 

The mean concentration predicted by (1 1) has some unrealistic features which can 
most easily be discussed for isotropic fields when EJO, t )  = 0.  A small-time expansion 
of (1 1 ) then yields 

8ttC = E(0,0)a , ,C+O(t2) ,  

indicating that the mean concentration initially behaves as a non-dispersive wave 
propagating at  the root-mean-square Eulerian velocity. This physically unrealistic 
behaviour will be implicated in comparisons of observed and predicted Lagrangian 
covariances. 

2.4. Direct-interaction approximation 

The direct-interaction approximation (DIA), introduced by Kraichnan (1959), has 
been applied to prediction of Lagrangian velocity statistics by Roberts (1961) and 
those predictions were tested by Kraichnan (1970). Evaluation of the DIA predictions 
rivals in computational difficulty direct simulation of particle motion; the more 
advanced DIA adaptations predicting Lagrangian statistics by Kraichnan (1965,1977) 
would involve even more extensive computation. Consequently, the DIA is not tested 
here and discussion is limited to some general features of the unaltered DIA. 

Working from the scalar concentration equation (lo), Roberts obtained an equation 
describing evolution of the mean concentration resulting from the initial condition 
C ( x ,  0) = S(x).  Repeating his derivation (equations (2.31-2.43)) without the restric- 
tion of incompressible flow leads to 

atC(x , t )  = I :d t ’ /dyEnm(y , t ’ ) -G(y , t ’ ) -G(x -y , t - t ’ ) .  a a 
aY, axn 

The evolution model is non-local in time (like the quasi-normal approximation) and 
in space; the nonlinearity is consistent with the linear nature of (10) because (14) 
pertains only to the initial condition C(x, 0) = S(x) .  

Because the DIA evolution conserves mass, that is I d x  C ( x ,  t )  = 1, Lagrangian 
velocity is easily found, through integration by parts, to be 

In  the limit of weak motions, when C(x,  t )  approximates S(z) for large times, the DIA 
prediction for V ( t )  is the same as (5) from weak-interaction theory and (13) from the 
quasi-normal approximation. In multi-dimensional flow existence of non-zero mean 
Lagrangian velocity requires both compressible flow and anisotropic Eulerian statistics. 
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In incompressible flows the Lagrangian statistics are stationary, there is no mean 
Lagrangian velocity, and, as Roberts showed, the Lagrangian covariance predicted 
by the DIA is 

which will be recognized as Corrsin’s conjecture (12). When the flow is compressible, 
as in the case considered here, the Lagrangian covariance cannot be deduced from 
C(x, t ) .  The mean product of Lagrangian velocities a t  two times is 

L(t) = p x E  (2, t )  C(X, t ) ,  

(W)  44’, = - t~ ,a t ( [ r (x , ,  t )  - r(x0, all2) 
= - ta,at/dXdY ( x  - Y ) 2 ( C ( X ,  t )  C ( Y ,  $1) 
= -a ,a tJdxtx2R(x , t , s ) ,  

where 

Here R(x, 4 s )  is the same ah R(x, t ,  8 I 0, 0,O) considered in 5 3.2 of Roberts (1961). 
If his derivation of the evolution equation for R is repeated without the constraint of 
incompressible flow, one obtains 

R(x,  t ,  4 = p y  (c(x + y, 8) c(y, t ) ) .  

a atR(X, t ,  8 )  = - a [dx‘/:dt’  C(x‘, t ’ )  R ( x  + x‘, t -  t’, s) I E,(x’, t ’ )  
ax, axm 

+ z / d x ’ (  axn axN /;dt’E,,(x’,t’)C(x‘,t’) R ( x + x ‘ , t - t ‘ , s )  

-~~ds‘E,,(x-x’,a-t-s‘)C(x’,s’)R(x-x‘, t,B-B’) 1 . 
The first term vanishes for incompressible flow and the last two terms correspond t o  
Roberts’ (3.25). If this is used to evaluate the time-lagged mean product of Lagrangian 
velocity one finds, after some manipulation, 

(v(t)w(s)) = V( t )  V(s)+JdxE(x,8-t)R(x,t,s). 

Without solving for R it is possible only to note that, since R(x,  t ,  t )  = 6(x), the DIA 
predicts 

that is, that Lagrangian and Eulerian velocity variances are equal. This is not found 
to be the caae in the simulations described below. 

2.5. Parametrized Gaussian model 

Both the quasi-normal approximation of 5 2.3 and the DIA of f 2.4 invoke two results 
in order to obtain the Lagrangian velocity covariance. Each involves an evolution 
equation for the mean concentration of particles (different for the two theories) and 
a method of using the resulting probability distribution of particle position to find the 
Lagrangian covariance (using Corrsin’s conjecture (12) for both). 

Saffman (1962) has shown that, if (12) is accepted and the shape of the mean con- 
centration field is specified, then a much simplified concentration evolution equation 
is achieved. Presumably on the basis of observational suggestions such as those quoted 
by Hinze (1959), Saffman proposed for isotropic fields that the mean concentration 
has a Gaussian shape so that for one-dimensional flow 

L(0) = ( ~ ‘ ( t ) )  - V 2  = E(O, 0), 

C(X, t )  = - - ‘ e x p ( - x )  2u2 ’ 
J(W 
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where by definition 02 = ( ~ 2 ) .  From (4) and (12) it follows that c 2  evolves according to 

s 1 d2 
2 dt2 -- u2 = L(t)  = C ( X ,  t )  E(x,  t )  dx, 

which is much more easily solved than the evolution equations of $82.3, 2.4. It 
should be noted that the successive approximation theory also approximates C with 
a Gaussian shape but does not employ Corrsin’s conjecture (12). While a Gaussian 
shape for C is consistent with Fickian diffusion it does not imply Fickian diffusion 
unless v2 = 2 ~ t ,  where K is a constant. For sufficiently large times, when u is much 
larger than the correlation length of E(x, t )  or t is much larger than the correlation 
time, Saffman’s model approaches this limiting form, a feature in accord with 
simulations. 

The Gaussian parametrization approach does not permit prediction of mean 
Lagrangian drifts in anisotropic fields. The Gaussian model itself is easily modified 
to  account for a moving mean particle position, but the mean position cannot be 
predicted from the resulting model. The reason for this can be understood when it is 
noted that C(z, t )  addresses the probability of finding near (x, t )  a particle released 
at (0,O) given no information beyond the values (2, t ) .  Since the Lagrangian drift 
results from a correlation of Eulerian velocity and particle position it is not surprising 
that the drift cannot be determined from a probability density which considers only 
position. 

In  4 3 we take up a new approach to prediction of Lagrangian velocity statistics 
which in its simplest form reduces to the parametrized Gaussian model but is capable 
of extension to prediction of Lagrangian drift. 

3. The statistical-estimator approach 
Review of the theories summarized in $ 2 shows that they may be classified into two 

groups according to their fundamental approach. The weak-interaction and successive- 
approximation theories of $2.1 and $ 2.2 are based on exact averages of approximate 
solutions of the fundamental kinematic equation (2). The quasi-normal closure, 
direct interaction approximation and parametrized Gaussian models of $ 2.3, 8 2.4 
and $2.5 are, in contrast, based on solving exactly an equation hypothesized to 
describe the evolution of statistical quantities. The former category suffers from the 
practical necessity of limiting analysis to approximate solutions which are simple 
and therefore inaccurate. The latter category suffers from an intrinsic lack of funda- 
mental principles to use in establishing statistical relations. A unique element of the 
approach described here is incorporating into the fundamental kinematical equations 
a statistical estimator which blends statistical hypothesis with approximate mathe- 
matics. An additional feature is that account is taken of the difference between 
randomly deployed particles and particles selected at  random long after their 
deployment. 

3.1. Long-after-deployment statistics 

As pointed out in $2,  stationary Lagrangian statistics are achieved only after de- 
ployment. During the transition to this statistically stationary state, statistical re- 
lations develop between particle velocity and position. In order to deal with these 
relations, which occur in both divergent and nondivergent flows, it is convenient to 
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introduce a set of Lagrangian co-ordinates m which remain fixed along a particle 
trajectory. A fluid ‘parcel’ is then the infinitesimal element ldml and conservation of 
mass requires that the linear dimensions of the parcel obey ldml = p 1d.I where p 
obeys 

a,p+v.up = 0. (16) 

Long after deployment statistics apply to ensembles of particles initially deployed 
randomly over some region A of the fluid which then defines the region over which 
averages are to be taken. As an example, consider surface wave motion confined to 
two dimensions in which the statistics of surface particle motion are of interest. One 
approach is to defhe A as a thin material.area near the surface in which, if the two- 
dimensional flow is non-divergent, p is constant. An alternative is to define a material 
line, M ,  which is confhed to the surface itself but in which p, the mms per unit length 
of particles, vanes because the tangential component of surface flow is divergent. 

The long-after-deployment limit of the mean Lagrangian velocity is obtained by 
averaging over the material element A. Thus 

since the particles of interest are uniformly distributed in m-space. If d is the area 
in x-space occupied by A, then using dm = pdx one obtains 

v = [/(X,t)U(X’t)dX /L p ( x , t ) d x .  (17) 

Consider now the surface wave example above. If M is a line along the surface then 
A is the line length, and (17) becomes V = (pu>/(p), where ( ) is the average along 
the line M. With the two-dimensional definition of A, p is constant, and the area at 
is itself modulated by the flow. If p ,  the thickness of the thin region d, is sufficiently 
small, then (17) becomes V = @u)/(p) with the same meaning of ( ). The result of 
either approach is the =me; in one case convergence of the tangential surface flow is 
reflected in a changing density, in the other case it is reflected in a deformation of the 
averaging area. In  either case Lagrangian drift results because the particles being 
followed are found preferentially on wave crests since both p and p are greater 
there. 

The Lagrangian time-lagged mean product is determined in the same way, leading 
to 

where r is the displacement of the particle found at  x at time t .  
Because the Eulerian field is stationary, the integrals in (17) and (1 8) define average 

quantities so that, with the definition @) = 1, we may write for the one-dimensional 
case 

= (dz ,  t )  u(z, t)), (19) 

(20) (v(t) v(t + 7 ) )  = (p(z, t )  u(z, t )  u(z + r{7>, t + 7)) .  

The contrast between (20) and (3) results because (20) pertains to the ‘long-after- 
deployment’ limit, in which the probability of finding particles at (z,t) is not 
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necessarily uniform, whereas (3) pertains to averaging over initial deployments 
which, by definition, are random and thus equally probable at  any position. The 
virtue of (19) and (20) is that they allow determination of long-after-deployment 
statistics without requiring knowledge of particle displacement over long times; they 
are not appropriate for determination of the non-stationary statistics describing 
behaviour following random deployment. 

It must be reiterated that the effect of variable p shown in (19) and (20) is not 
restricted to divergent fields. This is so because p is a property of the density field 
and how the particles over which averages are to be taken were deployed. Thus (19) 
and (20) apply to both divergcnt one-dimensional flow and multi-dimensional non- 
divergent flow in which particles are deployed in a thin tube with axial velocity u 
and mass per unit length p. Similarly description of particles deployed in a thin sheet 
in a three-dimensional non-divergent flow could be approached through a two- 
dimensional version of (19) and (20). 

3.2. Statistical estimators 
In  the present approach we seek to evaluate (19) and (20) using exact averages (without 
closure hypotheses) and estimates of p and r. The unique feature is that the estimates 
of p and r are made using statistically optimized estimators rather than an expansion 
procedure such as that employed in the weak-interaction and successive-approximation 
approaches of f 2.1 and f 2.2. Statistically optimized estimators have been employed 
extensively in developing empirical predictors for complex fluid-dynamical system 
(cf. Davis 1977) but are less widely applied in theoretical developments. The funda- 
mental philosophy is that certain variables are selected as being pertinent to deter- 
mixiing the quantity to be estimated and then these variables are combined in a 
manner which minimizes a statistical measure of the error of the estimate. The 
statistical estimation technique and expansion procedures are not necessarily mutually 
exclusive since expansion solutions can serve to isolate the pertinent variables upon 
which the statistically optimized estimate is based. 

Consider first estimation of the density p which obeys the conservation equation 

(a,+ua,)lnp = -a,u. (21) 

Analogous to the weak-interaction approach of f 2.1, an expansion in terms of small 
u would produce the leading term 

ln{p(z, t)> = -/ a,u(x, t’) dt’ = -q,(z, t ) .  

In  the opposite limit, when the advective term of (21) dominates, particles accumulate 
at points where u = 0, u, < 0; examples of this tendency in large-amplitude flow are 
provided by Liu & Thompson (1974). 

I 

--03 

In this examination, the statistically optimized density estimator 

p^ = e-aqz[ 1 + j3u2]Yp; l, (22) 

with /3 > 0, is explored, The constants a, j3 and y are selected to minimize a statistical 
measure of the error when (22) is substituted in (21) while po is selected SO that (b)  = 1.  
When j3 = 0 the estimator becomes the first term in the weak-interaction solution of 
(21). The term involving p and y is, frankly, a crude way of modifying the weak- 
interaction solution to account for the advective term in (21) and permit the modelling 
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of phenomena such as particle accumulation at  points where u is small. The particular 
form was selected primarily for computational simplicity rather than theoretical 
inspiration or trial-and-error testing. In  essence, the thesis of this examination is 
that statistical optimization of simple functional forms can lead to accurate results 
without appeal to phenomenological ' closure hypotheses '. 

In  terms of the error measure B = In (p/p^) the constants in ( 2 2 )  are selected to 
minimize the mean square of the error in (21 ) ,  which is 

_ -  - u, - (a,  + u a,) In p^. d€ 
at 

It is not possible to minimize (G) since p itself is not known. The functional to be 
minimized is 

where 

Since u is specified to be normally distributed, B(P) can be evaluated analytically in 
terms of the error function (cf .  Abramowitz t Stegun 1964) .  For any particular P, 
the optimal values of a and y can be found analytically by the usual procedure of 
extremizing the quadratic form. The optimal p, however, must be found by an exhaus- 
tive search which in practice is simple and economical. 

As anticipated from the form of (22 ) ,  when (uz) is small a is approximately unity 
and is small. As the flow becomes more vigorous the p-term in ( 2 2 )  becomes more 
important and y is negative, corresponding to particle accumulation at  points where 
u is small. 

Before proceeding to estimation of the Lagrangian displacement r ,  further discus- 
sion of the philosophy and limitations of using estimators like ( 2 2 )  is in order. In  
defense, it must be said that exact solutions to ( 2 1 )  exist only for the simplest flows 
and that approximate expansion solutions are defensible only for very restrictive 
assumptions such as the weak-interaction assumption. The statistical estimator is 
based on approximate analysis and uses statistical procedures only to optimize the 
approximate analytic forms which are its foundation. If more accurate analytic 
approximations for p were available it would still be desirable to optimize them accord- 
ing to a statistical measure of error. The improvement of imperfect dynamical models 
through statistical optimization was discussed briefly by Davis ( 1 9 7 7 ) ;  a graphic 
example of the utility of the procedure was supplied by Lorenz (1977) .  Basically, 
once a measure of error has been defined the statistical optimization of a model can 
only improve its average accuracy. Unfortunately, it  cannot be ensured that t-he error 
as measured by another criterion will also be minimized. For example, miniinizing 
at  every point the mean square of deldt does not insure the smallest mean square of e; 
neither does it follow that the B with smallest mean square will yield the most accuritte 
averages in ( 1 9 )  and ( 2 0 ) .  Thus, while statistical optimization has been slio\vn to 
greatly enhance imperfect analytic models, success is not assured and efficncy can 
only be determined through comparison with exact results. 

B(p) = ([I +pu21-1>. 
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An estimate of the Lagrangian displacement r(7) which appears in (20) can be 
approached through a statistically optimized approximate solution of 

One such approximation is 

with p selected to minimize the mean square of dvldt and v treated as a normally 
distributed random variable independent of u and p. When compared with direct 
simulations (see $4)  it was found that this estimate was in no way superior to the 
much simpler hypothesis that ~ ( 7 )  is an independent normally distributed random 
variable. Only the simpler estimate will be considered here since it is much easier to 
implement. As will be seen in the following section, this simple approximation is 
closely related to Corrsin’s conjecture (12) and the parametrized Gaussian model of 
8 2.6. 

3.3. The estimator model 
Following the procedures outlined above, it is possible to select appropriate values of 
a, B and y, thereby specifying the unknowns in (22) or the equivalent 

r(7) = P(7) u(z, t )  + v, 

where (E’) = 0 and E’ is to be treated aa a random variable independent of u. 
With p specified by (23) it is,possible to find the mean drift velocity V and the mean- 

square Lagrangian velocity (w2) directly from (19) and (20), without knowledge of 
the displacement r. This involves evaluation of averages of the form 

(un[ 1 + /3u2]Y e-aqz) 

for n = 0,1 and 2. This could be accomplished through integration using the joint- 
normal distribution of u and 7, but is made simpler by noting that 11, itself can be 
specified exactly in terms of u using the minimum-mean-square-error estimator 

where 

Since u and q, are joint-normally distributed, so are u and 6; since the latter are un- 
correlated it follows that they are independent. Thus 

(0 = ( 4 3  = 0, ( C 2 )  = <11:>-(u112)2/(u2)* 

where 

a* = a(uq2>/(u2). 

The constants F,, can be computed by a single integration of the univariate normal 
distribution of u. 

In the limit of weak flows a --f 1, B + 0 and (uqz)/(u2)* --f 0. In  this cwe (25) re- 
duces to the leading terms of the weak-interaction predictions 

v = -(uy2) = (u27), (v2) = (u”. 
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This agreement follows from the fact that the statistical estimator for p was chosen 
so that it could equal the weak-interaction approximation if statistical optimization 
indicates that a = 1 is the optimal choice. 

Evaluation of the Lagrangian covariance from (20) is accomplished by noting that 
when r is approximated as an independent, normally distributed variable 

(v(0) v(tD = ( p  (07 0) N O ,  0 )  M . 7  t ) )  

where aa = ( [r-(r)I2) .  The second line of (26) will be recognized as Corrsin’s con- 
jecture modified for the effects of non-uniform particle distribution in the long-after- 
deployment limit; the third line is the analogue of the parametrized Gaussian model of 
$2.6;. These two correspondences follow respectively from taking r independent of 
both p and u and from taking r to be normally distributed. 

Substitution of the estimators (23) and (24) into (26) followed by evaluation of the 
average yields 

where 
t ,  = ( u ( 0 7  u(27 t ) ) / { 2 L 2 ) 7  

t ,  = (u4z) ‘$4- (4Z(’7 O )  u ( x 7  t ) )*  

The space-time-lagged mean products in a, and a2 may be related to the wavenumber- 
frequency spectrum @(k,w)  of (1) and the integration in (27) performed. For the 
special case of an isotropic spectrum with <p( - k, w )  = @(k, w )  this yields 

~ ( t )  = $ ) j / d w d k  ~ ( k ,  w )  e-ilk*v* coswt. ( 2 8 4  

W b )  

According to (4) 
d2 xa = W), 

which, coupled with the initial conditions cr = dcr/dt = 0 at t = 0, forms a single 
differential equation from which L(t) may be determined. 

More elaborate predictors for the displacement r ( t )  can be employed and lead to 
differential equations similar to (28) with considerably more complex expressions for 
L(t) in terms of <p(k, w ) .  As mentioned in $3.2, no such extension yet examined has 
produced better comparison with simulations than that achieved from (28). 

4. Comparison with simulations 
In this section the foregoing theories are tested through comparison with simula- 

tions of particle motion in one dimension. Attention is restricted to the single-particle 
statistics of mean Lagrangian velocity and the frequency spectrum which itself 
determines the mean-square Lagrangian velocity and the single-particle ‘eddy dis- 
persion’ as defined in (4). The philosophy is the same as that of Kraichnan (1970), 
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who presented the results of simulating particle motion in two and three dimensions, 
but there are some noteworthy differences. Firstly, anisotropic velocity fields are 
considered so that non-zero Lagrangian mean velocity can be observed with a vanish- 
ing Eulerian mean velocity. Secondly, comparison is made between observed and 
predicted frequency spectra rather than time-lagged covariances; this permits a more 
detailed cornparison than is possible using plots of covariances which are dominated 
by energy-containing scales. Thirdly, the Eulerian spectra employed here contain 
features which accentuate the differences between Eulerian and Lagrangian spectra; 
in particular, one Eulerian spectrum examined contains no energy a t  zero frequency 
so that any ‘eddy dispersion’ (proportional to the Lagrangian spectrum at zero 
frequency) results from the nonlinear Eulerian-Lagrangian relation which the theories 
seek to predict. Additional simulations of particle motion in one dimension are 
presented by Liu & Thompson (1974). 

Simulations are based on stationary, homogeneous, and joint-normally distributed 
Eulerian velocity fields composed of a spectrum of components obeying the dispersion 
relation w2 = k. The Eulerian wavenumber-frequency spectrum, defined in (i), is 

@ ( k , w )  = 4(w)[QNb(k-wl~I)+Qp6(k+~(~1)1. (29) 

The function 4 is an even function of w and the integral of 4 over positive and negative 
frequencies is unity; thus the mean-square Eulerian velocity is Q = QN + Qp and QN 
and Qp are, respectively, the variance associated with waves which propagate in the 
negative and positive x-directions. The mean Eulerian velocity is always zero. The 
time and length scales are chosen so that energy in the Eulerian spectrum is limited 
to IwI Q 1 and Ikl < 1. Thus Q is the ratio of mean-square Eulerian velocity to the 
square of the propagation velocity of the slowest components with w = k = 1. Small 
Q corresponds to  wavelike conditions and the limit Q +- 00 is ‘frozen turbulence ’. 

Reported here are results obtained from two Eulerian spectral shapes. These were 

and 

with 9 = 0 unless noted. The first spectrum will be referred to as the ‘flat spectrum’ 
and the second as the ‘ 0-l spectrum ’. The spectra were either isotropic, with 

or unidirectional, with Q = Qp and QN = 0. 
Realizations of Eulerian velocity fields were generated using eighty independent 

Fourier components selected using a pseudo-random number generator to have 
normally distributed amplitudes with variances appropriate to the particular +(w) 
used in (29). For each realization, the particle position was determined by integrating 
(2) with a finite-difference predictor-corrector scheme involving analytic evaluation 
of Lagrangian velocity and its derivative and leading to a relative error of order time- 
step cubed. 

Primary interest here is in ‘ long-after-deployment ’ statistics which are stationary. 
A transition to stationary statistics was verified for both Eulerian spectra and it was 
found that the timescale of transition predicted by ( 5 )  is characteristic of the approach 
to stationarity of both V and ( ~ ’ 2 ) .  Long-after-deployment statistics were then 
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FIGURE 2. As figure 1 but for the flat Eulerian spectrum. 

FIGURE 1.  Mean and variance of Lagrangian velocity for the w-l Eulerian spectrum. Upper 
curves and filled-in symbols are (v'a)/Q, lower curves and open symbols are V / Q .  Squares are 
observations for the isotropic spectrum, circles the unidirectional propagation case. Three-letter 
identifiers of theories m e  defined in the text, WIT and DIA variance predictions are the same 
for isotropic and unidirectional cams. For varianoe QNA denotes isotropy, QNA-t is the uni- 
directional c w .  
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accumulated for 64 < t < 576, where no lack of stationarity could be detected; for 
each case examined the histories of 125 particles were used for averaging. The major 
points of comparison for the theories were the mean Lagrangian drift velocity the 
variance of Lagrangian velocity (v‘z), and the shape of the frequency spectrum of 
velocity. Examination of multi-particle statistics is deferred for a later report. 

In the subsequent discussion the various theories of $ 2 and $ 3 are referred to by 
the following shorthand notations: weak-interaction theory of $2.1, WIT; successive- 
approximation procedure of $ 2.2, SAP; quasi-normal approximation of § 2.3, QNA; 
direct-interaction. approximation of $ 2.4, DIA; Gaussian parametrization model of 
Q 2.5, GPM; statistical estimator of $ 3, EST. 

The normalized mean velocity V / Q  and variance (v t2) /Q for the w-1 spectrum are 
plotted in figure 1 and those for the flat spectrum are plotted in figure 2. The two 
figures are remarkably similar, even to the point of showing a consistent pattern of 
differences of variance between isotropic and unidirectional spectra. At small Q the 
variance approaches Q (i.e. equal Lagrangian and Eulerian velocity variance) and the 
drift becomes proportional to Q. In the flat-spectrum case it is difficult to determine 
V when Q is small because of relatively large variability associated with the zero- 
frequency energy in the Eulerian spectrum. As Q increases both (vr2)/Q and V / Q  begin 
to increase and then decline rapidly when Q exceeds unity. This type of behaviour is 
anticipated as a result of the phenomena of particle trapping at points where u = 0, 
8,u < 0 as discussed in $ 3.2. 

To the order developed in $ 2.1, WIT predicts a constant value of V / Q  and a value 
of the difference between Q and (ur2)  which is O(Q2) and is the same for isotropic and 
unidirectional spectra. The variation of ( d 2 ) / Q  is accurately described for small Q 
and the small-Q limit of V / Q  is correct. As anticipated for an asymptotic expansion, 
the predictions become inaccurate unless Q < 1. 

The SAP predicts (v r2 )+  V 2  = Q and thus fails to predict the observed variation 
of (vr8)/Q for isotropic spectra or the occurrence of (d2) greater than Q. As discussed 
in 5 2.2, SAP predicts B = 0 in the long-after-deployment limit unless the Eulerian 
spectrum vanishes at zero frequency and figure 2 shows this to be incorrect. 

The QNA predicts the same V as that obtained from WIT and ( ~ ’ 2 )  = Q -  V2. 
These are unsatisfactory predictions unless Q < 1. 

The DIA predicts (vr2) = Q,  satisfactory for small &. The DIA evolution equation 
was not solved so the predictions for V cannot be compared with simulations. As 
discussed in $2.4, the predictions of B for small Q are similar to WIT and thus 
reasonable. 

The GPM predicts (v t2)  + B2 = Q but is not capable of predicting V .  Even if exact 
values of V are used, the variance predictions are unsatisfactory for large Q and do 
not describe the rise of (v’2)/Q observed around Q = 0.3. 

The statistical-estimator model provides mean-velocity and velocity-variance pre- 
dictions which describe quite well the behaviour of a wide range of Q, describing both 
the rises of (ur2) /Q and V / Q  near Q = 0.3 and the marked decrease of these variables 
at large Q. The kink in these predictions near Q = 5 is an artifact associated with a 
singularity in the function y ( Q )  in (23). 

For each Eulerian spectrum the frequency spectrum of the Lagrangian velocity 
was computed from 125 velocity histories spanning 64 .c t < 576, providing a funda- 
mental frequency resolution of Aw = 0-0123. The observed spectra plotted here were 
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FIGURE 3. Observed frequency spectrum of particle velocity from the isotropic w-l Eulerian 
spectrum. The elementary bandwidth is 0.0123, 125 partiole histories are averaged and the 
spectrum is smoothed with a five-point equal-weight running mean. The curves correspond to 
Q = 0.04, 0.2, 1.0, 4.0, 20.0. 
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FIGURE 4. Frequency spectra predicted by MIT and QNA for the isotropic w-l Eulerian spec- 
trum. Lower curves are WIT predictions for Q = 0-04 and 0.2; in the latter negative predictions 
are shown by a dashed line and there is a discontinuity at  w = 1. The upper curve is the QNA 
prediction for Q = 4-0; the features marked by arrows are discussed in the text. 
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smoothed with a five-point, equal-weight running mean. Figure 3 contains Lagrangian 
spectra obtained from isotropic w-l Eulerian spectra. Even for Q = 0.04 the energy 
outside the frequency range 0.2 c w c 1 is a result of differences between Lagrangian 
and Eulerian spectra, not analysis spreading. As Q increases the spectra show increased 
transfer to both high and low frequencies so that for Q > 1 almost all vestiges of the 
band-limited nature of the Eulerian spectrum are lost. 

Of the theories in 9 2 and 9 3, two yield unacceptable predictions for the shape of 
the Lagrangian frequency spectrum and three yield reasonably accurate predictions. 
The unacceptable spectra are predicted by WIT and QNA, those theories of 3 2 which 
were capable of estimating Lagrangian drift. Both SAP and GPM yield acceptable 
spectral estimates but fail to predict mean drift while EST yields both acceptable 
drifts and spectra. 

Examples of the unsatisfactory nature of WIT and QNA spectral predictions are 
shown in figure 4 where Lagrangian spectra for the symmetric w-l Eulerian spectra 
are shown. 

The WIT prediction for Q = 0.04 strongly resembles the observed spectrum in 
figure 3 but the Q = 0-2 spectrum shows only a weak resemblance to the general shape 
of the observed spectrum and, over a range of frequencies, contains physically un- 
realizable negative spectral values. As the value of Q increases above 0.2 the region 
of frequencies over which the predicted spectrum is negative increases and the overall 
spectral shape becomes less realistic, primarily because the variance is confined to 
w < 2. As a general rule, for 0.2 c w c 2 WIT exaggerates the difference between 
Eulerian and Lagrangian spectra so that where the true Lagrangian spectrum is 
lower than the Eulerian the prediction can become negative. Energy is limited to 
w c 2 because the theory is carried only to third order, thus including only interaction 
triads in which two members are first-order components with frequencies less than 
unity. Thus the highest-frequency component is the ‘sum frequency ’ component 
with frequency less than 2 ,  

The QNA-predicted spectra are somewhat more realistic than those from WIT. 
For Q c 0.1 the predictions are reasonable but as Q increases the spectral shapes 
become completely unrealistic, as evidenced by the Q = 4 example in figure 4. Con- 
sistent features of QNA spectra for Q > 1 are a maximum energetic frequency 
w = 1 +,/Q and an abrupt energy decrease at w = 1-4s; these are indicated by the 
two vertical arrows in figure 4. It will be recalled from $2.3 that the early-time be- 
haviour of the particle concentration is characterized as a wave of propagation speed 
,/&. Thus the o = 1 k , /Q features, of which there is no indication in the observations, 
would appear to be spurious artifacts of particles ‘ propagating ’ at speed ,/& through 
the slowest-moving Eulerian velocity components with w = k = 1. 

Figure 5 depicts the SAP spectral predictions and observed spectra for various 
values of Q in the symmetric w-l Eulerian spectrum. The predictions for Q c 1 are 
remarkably accurate. The general behaviour of the observed spectra with increasing 
Q is reproduced but there is a consistent overestimate of high-frequency energy and 
the features around w = 0.2 are smoothed away more completely than is observed. 
Nevertheless, the predictions of spectral shape are credible, particularly when it is 
noted that some of the discrepancy in figure 5 seen for Q > 1 is the result of SAP 
overestimating the Lagrangian variance. 

Figure 6 depicts the statistical-estimator spectral predictions for the same w-l 
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FIUTJRE 5. Frequency spectra predicted by SAP superposed on observations from figure 3. 

W 

FIGURE 0. Frequency spectra, predioted by EST superposed on observations from figure 3. The 
three lower curves for Q = 0.04, 0.2, 1.0 are also GPM predictions and the upper two are very 
similar to their GPM counterparts. 
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spectrum as figure 5.  As discussed in $3, there is considerable similarity between the 
spectral estimates of EST and GPM. In fact, as (28a) shows, when the Eulerian spec- 
trum is symmetric the two forms differ only by a constant factor. Thus the reasonable 
agreement between simulation and prediction found in figures 6 and 7 (the spectral 
predictions for the flat spectrum) demonstrates that both EST and GPM are useful 
for predicting spectral shape. 

For reasons mentioned above, no DIA spectral predictions were computed for 
comparison with the one-dimensional simulations. Kraichnan (1970) did compare 
observed Lagrangian velocity correlation functions with those predicted by DIA for 
two- and three-dimensional flows. When SAP, GPM and EST predictions for the 
one-dimensional spectra examined here are compared with observed correlation 
functions the degree of similarity is similar to what Kraichnan found for his ‘ o, = vok0 ’ 
cases and better than he found for the frozen-turbulence ‘ wo = 0 ’ cases. Unfortunately, 
Kraichnan’s correlation-function plots do not permit a very precise comparison so 
that one can only say that DIA, like SAP, GPM and EST, produces credible spectral 
predictions. It should be noted that Lundgren & Pointin (1976) compared the corre- 
lations predicted by GPM with Kraichnan’s results and found an agreement with 
observations which was comparable to that obtained by the much more complicated 
DIA predictions. 

5. summary 
The intent of this work was to determine which of several theoretical approaches 

led to  good predictions of the Lagrangian velocity statistics describing motion of 
single particles in stationary and homogeneous velocity fields. It was felt that this 
was the appropriate first step before proceeding to examine more complex questions 
such as the dispersion of particle clouds or the effects of Eulerian fields whose statistics 
vary in space. 

Toward this end the theories of Q 2 (WIT, SAP, QNA, DIA and GPM) were examined 
first. It was noted that these theories could be divided into categories depending on 
whether they were based on exact averaging of approximate solutions of the kinematic 
equation (WIT and SAP) or on exact solutions of equations hypothesized to describe 
the evolution of statistical properties (QNA, DIA and GPM). Of these theories DIA 
is the most complicated to implement and was not compared with simulations. From 
the discussion of $2.4 it  is evident that DIA leads to plausible estimates of the Lagran- 
gian mean drifts and, from Kraichnan’s (1970) results, it is known that it yields good 
predictions of the frequency spectrum of particle velocity. The other theories, however, 
have unacceptable features. WIT and QNA produce poor frequency-spectrum esti- 
mates, SAP and GPM cannot predict mean drifts in anisotropic velocity fields, WIT 
yields reasonable Lagrangian velocity-variance estimates only for weak wavelike 
flows, and no theory explains the observed variation of Lagrangian velocity variance 
as the strength of the flow varies from wavelike to strongly nonlinear. 

In  retrospect these conclusions could, in large measure, be anticipated. Weak- 
interaction theory is an asymptotic expansion about the weak-flow limit and there- 
fore could not be expected to yield useful results for flows where particle velocities are 
comparable with the phase velocities of Eulerian velocity components. This may 
explain why WIT has therefore been used only to predict mean Lagrangian velocity 
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FIGURE 7. Observed particle velocity spectre from the isotropic flat Eulerian spectrum for 
Q = 0.04, 0.2, 1-0, 4.0, 20.0 (solid curve) and corresponding EST predictions (dashed). 

(Stokes drift) but also serves as a cautionary note with regard to the use of WIT in 
predicting the spectral evolution of nonlinear systems as is done by Hasselman ( 1966). 
The other theories all suffer to some degree from failing to account for the difference 
between initial and late-time behaviour of randomly deployed particles. This explains 
why SAP and GPM do not describe mean drift, which depends on development of 
relations between particle position and the velocity at  that point. Similarly, failure 
to account for the difference between initial and long-after-deployment statistics leads 
SAP, QNA and GPM to predict equal mean squares of the Lagrangian and Eulerian 
velocities. 

In an attempt to avoid the inadequacies of WIT, SAP, QNA and GPM while main- 
taining an equivalent computational simplicity and clarity of physical hypothesis, 
neither of which is found in DIA, the statistical-estimator theory of 0 3 was developed. 
The approach is unique in that approximate solutions of the kinematic equation are 
developed on the basis of minimizing the mean-square error in that equation rather 
than on a prescribed expansion or iteration procedure such as employed in WIT and 
SAP. In its simplest form, only the first weak-interaction correction to particle density 
(the a-term in (23)) is employed and the particle position is taken as unpredictable. 
This leads to reasonable mean drift estimates and, for isotropic spectra, Lagrangian- 
spectrum predictions which are identical to those of GPM, the most accurate spectral 
predictor examined in $2 .  In some sense the virtue of EST is its ability to predict 
mean drift as accurately as WIT and QNA while equalling the spectral predictions of 
GPM which are as accurate as any theory examined, including DIA. Further, by 
including the phenomenon of particle-trapping into the approximate solution (the 
,&term in (23)) one obtains a prediction of the varying ratio of Lagrangian to Eulerian 
velocity vurimce as the  strength of the flow increases. It is surprising that EST 
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spectral predictions are not improved by using more accurate approximations of 
particle displacement than the ‘unpredictable’ form used in (26). This substantiates 
the utility of Corrsin’s conjecture (12) which is employed in QNA, DIA and GPM. 

While no theory yet predicts accurately Lagrangian velocity statistics, the statisti- 
cal-estimator model does describe the major features of single-particle Lagrangian 
statistics. It may be hoped, then, that the model may fruitfully be employed in the 
examination of multi-particle statistics and Eulerian flow fields more complex than 
the one-dimensional, homogeneous, joint-normally distributed case examined here. 

This work was supported by Office of Naval Research under contract N00014-75- 
C-0152. I wish to thank R. Kraichnan for helpful suggestions and corrections added 
in review. 
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